Menu
网络机器人与系统实验室 Networked RObotics and Systems Lab
  • Home
  • People
  • Research
    • Ongoing Projects (项目)
  • Teaching
    • Courses for Undergraduate Students
    • Courses for Graduate Students
  • Publication
  • Positions
    • 博后招聘及待遇
    • 研究生招生(2023入学)
  • Contact
网络机器人与系统实验室 Networked RObotics and Systems Lab

Graduate Courses

移动机器人导航理论/Navigation of Autonomous Robots

  • Course Outline(2020-Now):
    • 1. Introduction to Probabilistic Robotics
    • 2. Bayes Filters and Kalman Filter (EKF, IKF, UKF)
    • 3. Kalman Filter-based Localization
    • 4. Discrete Filters: Histogram Filter,Particle Filter
    • 5. Partilce Filter Application:Monte Carlo Localization
    • 6. SLAM Introduction and Rigid Body Motion
    • 7. EKF-based Simultaneous Localization and Mapping
    • 8. Lie Group & Lie Algebra
    • 9. Nonlinear Optimization
    • 10. Visual Odometry: Direct & Feature-based
    • 11. Visual Odometry: Front-end & Back-end
    • 12. Visual-inertial Odometry: IMU preintegration
    • 13. BoW: Visual Loop Detection
    • 14. LiDAR-based SLAM: LOAM-LegoLOAM-LIO-SAM-LVI-SAM
    • 15. Motion Planning
    • 16. Field Potential and Optimization-based Path Planning & Final Project
  • Textbook:
    • Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, Dieter Fox;
    • State Estimation for Robotics
  • Course Outline(2018-2019):
    • 1. Introduction to Mobile Robots
    • 2. Introduction to Probabilistic Robotics
    • 3. Bayes Filter Implementations Kalman Filters
    • 4. Kalman Filter Implementations Localization
    • 5. Bayes Filter Implementations: Discrete Filters: Histogram Filter,Particle Filter
    • 6. Partilce Filter Application:Monte Carlo Localization
    • 7. Simultaneous Localization and Mapping
    • 8. Rigid Body Motion
    • 9. Lie Group & Lie Algebra
    • 10. Camera Model & Nonlinear Optimization
    • 11. Visual Odometry: Direct & Feature-based
    • 12. Front-end & Back-end
    • 13. Loop Detection
    • 14. Mapping & SLAM future
    • 15. Motion Planning & Final Project
  • Textbook:
    • Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, Dieter Fox;
    • State Estimation for Robotics
  • Navigation of Mobile Robots. (2011-2017)
    • Contents: Introduction of different kinds of mobile robots, Parameter/Non Parameter based Bayes Filters, Monte Carlo Localization, EKF based Localization, EKF-SLAM, FastSLAM, RGBD-SLAM, and Sample-based Motion Planning

计算机视觉/Computer Vision

  • Course time (2009-2010)
  • Textbook:    Digital Image Processing, Kenneth R. Castleman.
  • Computer Vision: a modern approach,David A. Forsyth, & Jean Ponce.

近期文章

  • T-RO 2025: Real-Time Multi-Level Terrain-Aware Path Planning for Ground Mobile Robots in Large-Scale Rough Terrains 2025-06-04
  • ICRA2025-Real-Time LiDAR Point Cloud Compression and Transmission for Resource-constrained Robots 2025-05-16
  • TFR2025-Terrain-Adaptive Planning of a Mobile Robot with a Multi-Axis Gimbal System for Stable SLAM 2025-05-08
  • RA-L 2025: A State-Time Space Approach for Local Trajectory Replanning of an MAV in Dynamic Indoor Environments 2025-02-14
  • 祝贺nROS代表队获得美团第二届低空经济智能飞行管理挑战赛冠军 2024-12-18
2025 年 6 月
一 二 三 四 五 六 日
 1
2345678
9101112131415
16171819202122
23242526272829
30  
« 5 月    

Never Relax Until Success Landing

©2025 网络机器人与系统实验室 Networked RObotics and Systems Lab | Powered by SuperbThemes & WordPress